

Available online at www.ijasbt.org

International Journal of Applied Sciences and Biotechnology

A Rapid Publishing Journal

APPLIEC	BIOTECHNOLOGY	
Biochemistry Molecular biology Microbiology Cell biology Cytology Genetics Pathology Medicinal chemistry Polymer sciences Analytical chemistry Natural chemistry	Immunobiology Bioinformatics Novel drug delivery system Pharmacology Neurobiology Bio-physics Botany Zoology Allied science Earth science	Microbial biotechnology Medical biotechnology Industrial biotechnology Environmental biotechnology Nanotechnology

If any queries or feedback, then don't hesitate to mail us at: editor.ijasbt@gmail.com

Research Article International Journal of Applied Sciences and Biotechnology ISSN: 2091-2609

GENETIC RELATEDNESS OF LENTIL (Lens culinaris L.) GERMPLASM BY USING SSR MARKERS

U. K. S. Kushwaha¹, S. K. Ghimire¹, N. K. Yadav² and B. R. Ojha¹

¹Institute of Agriculture and Animal Science, Rampur, Chitwan, Nepal

²Nepal Agricultural Research Council, Khumaltar, Nepal

Corresponding author email: kushujjwal@gmail.com

Abstract

Ninety six lentil accessions from different origins were collected from National Grain Legume Research Program, Rampur; Regional Agriculture Research Station, Nepalgunj and National Agriculture Genetic Resource Center, Khumaltar, Lalitpur. Among them; four lines were Nepal Local, forty two lines were Nepal Cross; forty seven lines were ICARDA Line and finally three lines were Indian Line. All ninety six accessions were analysed by DNA fingerprinting using thirty three selected polymorphic SSR markers. The characterization was performed in Biotechnology Unit, Nepal Agricultural Research Council, Khumaltar, Lalitpur by using standard protocols. Molecular variance analysis showed that 14 % genetic variation was found between population and 86 % genetic variation was found within population with estimated variance 0.23 between population and 1.35 within population. Highest genetic distance (9) was found between landrace ILL-7979 and RL-20. In the same way, highest Nei genetic distance (0.03) between population was shown by population 1 and population 4; and lowest genetic distance were observed within the same population accessions. The heterozygosity was probably due to the introgression of genes or duplication of microsatellite motif during the breeding and or the course of lentil line evolution. All the accessions included in this study displayed significant amount of genetic variability and genetic relatedness due to different center of origin and different genetic constitutions. The diversity detected in this study may constitute the new materials for future systematic lentil breeding programs.

Keywords: lentil, germplasm, characterization, genotypes, gene

Introduction

The knowledge of genetic diversity and association of characters with yield is of great importance to the breeder for making an improvement of quantitative characters. Molecular marker is used for estimating genetic variation at population level and among closely related species (Nienhuis *et al.*, 1995). Several classes of molecular markers have been developed showing that lentil has relatively low levels of genetic variation (Eujay let al., 1997; Sonnante and Pignone, 2001). Plant descriptors coupled with molecular markers provide a valid evidence of diversity as these are least affected by environmental fluctuations (Ahmad *et al.*, 1997; Jha and Ohri, 1996; Margale *et al.*, 1995).

Lentil (*Lens culinaris* Medik.subsp. *culinaris*) is an important principal cool season pulse crop of the Indian Subcontinent, the Middle East, North America, North Africa and West Asia (Erskine, 1996). Nepal has ha area 1,87,437altogether of lentil 1,51,758with d per hectare kg yiel 810metric ton productivity and M)oAD .(2011, The crop has developed into a range of

varieties adapted to diverse growing areas and cultural preferences, and containing unique nutritional compositions, colors, shapes and tastes. A lot of lentil land races, primitive races, indigenous races and wild races are still available in Nepal but they have not been studied properly .The genetic relatedness of lentil based on molecular level has not been studied yet in Nepal. Thus the yield attributing traits, disease resistance traits, insect pest resistance traits, abiotic stress tolerance traits and quality traits have not been identified and, cause delay in breeding for developing elite lines. Now a day the importance of lentil in Nepal is increasing due to its high nutritive value, important components of Nepalese diet, increased internal consumption and exportable commodity to foreign countries. Thus, there is an urgent need to increase the overall production and productivity of this crop through varietal improvement and suitable agronomic practices under rice-maize cropping systems in Nepal. Before initiation of lentil breeding activities there is urgent need to characterize, evaluate lentil germplasm available to us. Therefore present study was conducted

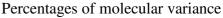
with an objective of selecting divergent parents based on genetic distance for future lentil breeding programme.

Materials and Methods

Diverse lentil germplasm were collected from National Grain Legume Research Program (NGLRP), Rampur; Regional Agricultural Research Station (RARS), Nepalgunj and National Agriculture Genetic Resource Center (NAGRC), Khumaltar. Collected accessions comprised fourlocal line/Nepalese native (Nepal Local): pop1; forty two NGLRP, Rampur crossed (Nepal Cross):pop2; forty seven ICARDA (ICARDA Line): pop3; and three from India (IndianLine): pop4 . The list of the collected germplasm is given in Table 1. Thirty three polymorphic microsatellites marker were used for PCR based on the results of previous report (Hamwieh *et al.*, 2005, 2009). The list of polymorphic markers, their name, sequence information, annealing temperature and amplification size are given in Table 2.

Table 1: 96 lentil materials used in this study based on source of origin

DNA SN	Variety name	Source of origin	DNA SN	Variety name	Source of origin
1	LN-0135	Nepal Local	13	ILL-10071	ICARDA
25	LN-0136	Nepal Local	14	ILL-9924	ICARDA
) 1	Arial	Nepal Local	15	ILL-6465	ICARDA
95	Khajura Masuro-2	Nepal Local	16	ILL-9926	ICARDA
2	RL-45	Nepal Cross	17	ILL-6458	ICARDA
3	RL-67	Nepal Cross	18	ILL-1020	ICARDA
ŀ	RL49	Nepal Cross	19	ILL-6811	ICARDA
	RL-79	Nepal Cross	20	HUL-57	ICARDA
'	RL-56	Nepal Cross	21	Sagun	ICARDA
5	RL-68	Nepal Cross	22	M.Bharati	ICARDA
)	RL-8	Nepal Cross	23	ILL-7162	ICARDA
0	X94S-48	Nepal Cross	24	ILL-7723	ICARDA
4	RL-4	Nepal Cross	26	ILL-3768	ICARDA
4	RL-60	Nepal Cross	28	ILL-8006	ICARDA (BM-4)
7	RL-70	Nepal Cross	29	ILL-7537	ICARDA
8	RL-73	Nepal Cross	31	IL-1	ICARDA
3	RL-71	Nepal Cross	32	ILL-7979	ICARDA
54	NR 2001-72-3	Nepal Cross	33	ILL-7715	ICARDA
57	RL-75	Nepal Cross	35	ILL-6467	ICARDA
58	RL-35	Nepal Cross	36	ILL-7164	ICARDA
59	RL-43	Nepal Cross	37	ILL-3490	ICARDA
50	RL-69	Nepal Cross	38	ILL-6419	ICARDA
51	RL-44	Nepal Cross	40	ILL-3111	ICARDA
52	RL-42	Nepal Cross	41	ILL-2527	ICARDA
53	RL-76	Nepal Cross	42	FLIP 2006-99L	ICARDA
54 54	RL-26	Nepal Cross	43	FLIP 95-1L	ICARDA
55	RL-41	Nepal Cross	45	FLIP 2009-60L	ICARDA
56	RL-39	Nepal Cross	46	FLIP 04-60L (ILL-10013)	ICARDA
57 57	RL-59 RL-58	Nepal Cross	40 6	ILL-3338	ICARDA
58	RL-58 RL-62	Nepal Cross	50	ILL-5358 ILL-6021	ICARDA
59	RL-02 RL-47	Nepal Cross	51	FLIP 05-24L (ILL-10045)	ICARDA
	RL-47 RL-80		52		
70 71	RL-80 RL-21	Nepal Cross	52 55	FLIP 05-24L (ILL-10065)	ICARDA
		Nepal Cross		FLIP 2008-7L	ICARDA
72	RL-23	Nepal Cross	56 72	FLIP 2009-54L	ICARDA
75	RL-94	Nepal Cross	73 74	FLIP 05-52L (ILL-10073)	ICARDA
78	NR 2001-71-4	Nepal Cross	74 76	ILL-6260	ICARDA
79	RL-74	Nepal Cross	76 77	X39S-66L	ICARDA
30	RL-20	Nepal Cross	77	ILL-10134	ICARDA
81	RL-25	Nepal Cross	83	ILL-10068	ICARDA
32	RL-95	Nepal Cross	87	ILL-7664	ICARDA
34	RL-22	Nepal Cross	88	Digger	ICARDA
35	RL-38	Nepal Cross	89	Bari Musuro-4	ICARDA
36	RL-5	Nepal Cross	92	ILL-6458	ICARDA
90	NX 9901 – 1	Nepal Cross	93	X 95583	ICARDA
96	RL 28	Nepal Cross	94	FLIP 2009 – 59L (ILL 10716)	ICARDA
97	RL-78	Nepal Cross	27	DPL-62	India
11	ILL-2712	ICARDA	30	WBL-77	India
12	ILL-1970	ICARDA	39	LG-12	India


	SAK NO.	Forward	Reverse	Annealing termp. (Tm) used for FCR (^A C)	expected size (bp)
_	SSR342	CGCCCCATGAAACTAAAG	CALTIFICETICACAAACCAAC	8	185
C 1	SSR 66	GGTAGTGGTGAGGAAFGAC	GCATCACTGCAACAGAGC	55	253
m	SSR 90	CCGTGTA.CACCCCTA.C	CGTCTTAAAGAGAGAGACAC	55	10
4	SSR 132RN	CCAGAACAAACGTAAACC	CTATCCCATATGAGFGAAC	52	330
wn,	SSR 191	6CAATTTCTTGGTCTACAC	GOCACAGATTCATAAGG	53	238
•	SSR 197	CACCAATCACCAACACAC	GACCTGTGAAGTCTTATCTG		21
L	SSR 207	GAGAGATACGTCAGAGTAG	GAITIGTOCTTCGGTGGTTC	55	227
	SSR 230	CCAACAACAATICACCATAC	AACALTIGTACTIGA GACGTG	53	251
6	SSR 33	CAAGCAFGACGCCTATGAAG	CTITEACTEACTEAACTETC	56	289
0	SSR 19	GACTCATACTTTGTTCTTAGCAG	GAACGGAGCGGTCACATTAG	58	250
=	SSR 48	CATGGT6GAATAGT6ATCCC	CTCCATACACCACTCATTCAC	57	165
2	SSR 96	GTIATCTTCCAGCGTC	GATATACAATCAGAGATG	61	210
<u>5</u>	SSR 99	GGGAATTTGTGGGGGGAAG	CCTCAGAATGTCCCTGTC	57	161
4	SSR 107	GCGGCGAGCAA ATAAAT	GGAGAATAAGAGTGAAATG	51	161
<u>8</u>	SSR 113	CCGTAAGAATTAGGTGTC	GGAAATAGGGTGGAAAG	51	211
9	SSR 119	GAACTCAGTTTCTCATTG	GAACATATOCA ATTATCATO	40	266
11	SSR 124	GIATGTGACTGTATGCTTC	GCALTGCALTTCACAAACC	52	<u>4</u>
8	SSR 130	CCACCTATGTGACTGTATG	GAAGAGAGGCTGAAACTTG	55	196
6	SSR 156	GTACATTGAACAGCATCAFC	CAAATGGGCATGAAAGGAG	53	176
30	SSR 167	CACATATGAAGALTIGGTCAC	CALITIALGTCTCACACACAC	达	160
21	SSR 199	GTGTGCATGCTGTGTG	CCATCCCCTCTATC	51	182
8	SSR 204	CACCACTATCCCACTTG	CTTACTTTCTTAGTGCTATTAC	53	186
8	SSR 212-1	GACTCATTGTTGTACCC	GCCA GAAGAAT GGTT G	50	18
치	SSR 213	CACTOBCACCTCTTATG	GAAITGTCTCTTAGCAAG	51	151
2	SSR 309-2	GIATGFCGTTAA CTGTCGTG	GAGGAAGGAAGTAITCGTC	50	182
8	SSR317-1	GTGCGTGTAATTATTCCTAC	GTATCAAACITATGGFGAAATC	53	308
17	SSR317-2	CACGTAACATCITGCTTATG	GTAGCAATAATTACACCCAC	53	120
8	SSR 323	AGTGACAACAAAAAGGGGGGG	GTACCTAGTTTCATCATTG	51	250
2	SSR 336	GTGTAACCCAACTGTTCC	COCCGAGGTTGTAACAC	2	233
8	SSR 183	GCTCGCATTIGCTGAAAC	CATATAGCAGACCGTG	52	119
e	SSR 202	CAACCTCACTTACCTTAC	GCTCTTTATCATCATTCTAC	52	220
멍	SSR 23	GAGGGCATAAATTCAGATTC	GGACAACGCACATITGATG GGACAACGCACATITGATG	53	383
89	SSR 72	CA AACAGTACA AGGAAAGGAG	CTGACTGAGCTGCTTGAAC	ť	00

DNA fingerprintingwas conducted with SSR markers. This fingerprinting was performed in Biotechnology unit, Nepal Agricultural Research Council, Khumaltar, Lalitpur. Lentil DNA extraction was done by Modified CTAB method (Doyle and Doyle, 1987) using standard protocol followed by DNA quantification, PCR amplification, gel separation and scoring of gel separated bands using standard protocol. The amplified products were scored as bands on visualization on gel on UV illuminator. Only the reliable bands were included in analysis. The presence of bands was scored as "1" and absence of band was scored as "0". The respective data analysis, data entry and processing was carried out by using Microsoft Excel 2007. Percentage of molecular variance and genetic distance were found out by GenAlEx^x6.5b3.xls.

Results and Discussion

Molecular variance analysis

Molecular variance analysis for genetic diversity of ninety six genotypes of lentil was carried out by GenAlEx6.5b3.xls. 14 % genetic variation was found between population and 86 % genetic variation was found within populations (figure 1). Estimated variance between population was 0.228 with 14.42 % and within population was 1.358 with 85.57 % out of 1.581 with 100% with PhiPT 0.144 (Table 3). This showed that high genetic relatedness were between population and far relatedness were within population.

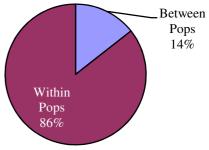


Fig. 1: Percentage of molecular variance between and within population for 96 lentil accessions.

Table 3. Summary of AMOVA table with estimated variance among and within population for 96 lentil accessions

Source	Df	SS	MS	Est. Var.	%
Between Pops	3	16.430	5.477	0.228	14%
Within Pops	92	124.476	1.353	1.353	86%
Total	95	140.906		1.581	100%
Stat	Value	P (rand 2	>= data)		
PhiPT	0.144	0.010			
Where $PhiPT = AP / (WP +$	AP) = $AP / TOT Kev: A$	P = Est. Var. Betw	een Pops, WP = I	Est. Var. Within P	ops (PhiPT

Where PhiPT = AP / (WP + AP) = AP / TOT Key: AP = Est. Var. Between Pops, WP = Est. Var. Within Pops (PhiPT max=0.918; Phi'PT=0.157 P(rand >= data) 0.010)

Table 4. Pairwise	population matrix	x of nei genetic distan	ce for 96 lentil acce	essions with four population

	Pop1	Pop2	Pop3	Pop4
Pop1	0.000			
Pop2	0.015	0.000		
Pop3	0.032	0.019	0.000	
Pop1 Pop2 Pop3 Pop4	0.033	0.029	0.015	0.000

Table 5. Pairwise population matrix of nei unbiased genetic distance for 96 lentil accessions with four population

	Pop1	Pop2	Pop3	Pop4
Pop1	0.000			
Pop2	0.000	0.000		
Pop3	0.016	0.017	0.000	
Pop1 Pop2 Pop3 Pop4	0.006	0.016	0.001	0.000

Genetic distance

The pairwise population matrix showed that highest (0.033) Nei Genetic Distance was found between pop 1 and pop 4 and lowest was found within the same population i.e. pop1, pop2, pop3 and pop4. Similarly, pop3 and pop2 had highest (0.017) Nei Unbiased Genetic Distance and lowest distance was found within the same population (Table 4 and 5). Pop1 (Nepal Local) and pop2 (Indian Line) had highest genetic distance which might be due to different center of origin and different genetic constitutions. Similarly, genetic relatedness were found within the populations which might be due to same center of origin and similiar genetic constitutions.

Highest genetic distance (9) was found between landrace 32 (ILL-7979) and 80 (RL-20) calculated from GenAlEx6.5b3.xls. The highest and lowest level of genetic distance was 0.027273 and 0 respectively. The difference between the highest and the lowest inter genotypic distance indicates the moderate variability among the 96 genotypes of lentil.

Conclusion

Highest genetic distance (9) was found between landrace ILL-7979 and RL-20. Similarly, high genetic relatedness were found within the same population which might be due to same center of origin and similar genetic constitutions. In the same way high genetic distance were found between Nepal Line and Indian Line which might be due to different center of origin and different genetic constitutions. The level of genetic relatedness detection largely depends on the type of molecular markers, nature of SSR repeat motif, number of SSR markers and the genetic relatedness of the lentil germplasm to be analysed. All ninety six genotypes involved in the study exhibited wide range of genetic variability due to different center of origin, different genetic constitution. The genetic relatedness detected in this study may constitute the foundation for future systematic lentil breeding programs.

Reference

Ahmad M, McNeil DL and Fautrier AG (1997) Phylogenetic relationships in *Lens* species and parentage

determination of their interspecific hybrids using RAPD markers. *Euphytica* 94: 101-110.

- Doyle JJ and Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11-15.
- Erskine W, Bayaa B and Saxena MC (1996). Registration of ILL 5588 lentil germplasm resistant to vascular wilt and ascochyta blight. *Crop Science*. 36, 1080.
- Eujayl I, Baum M, Erskine W, Pehu E and Muehlbauer FJ (1997) The use of RAPD markers for lentil genetic mapping and the evaluation of distorted F2 segregation. *Euphytica* 96: 405-412.
- Hamwieh A, Udupa SM, Sarkar A, Jung C and Baum M (2009) Develpoment of new microsatellite markers and their application in the analysis of genetic diversity in lentils. *Breeding Science* 59: 77-86.
- Hamwieh A, Udupa SM, Choumane WM, Sarker A, Dreyer F, Jung C and Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. *Theor. Appl. Genet.* 110: 669-677.
- Jha SS and Ohri D (1996) Phylogenetic relationships of *Cajanus cajan* (L.) Millsp. (Pigeonpea) and its wild relatives based on seed protein profiles. *Genet. Resour. Crop Evol.* 43: 275-281.
- Margale E, Herve Y, Hu J and Quiros CV (1995). Determination of genetic variability by RAPD markers in cauliflower, cabbage and kale local cultivar from France. *Genet. Resour. Crop Evol.* 42: 281-289.
- MoAD (2011) Stastistical Information on Nepalese Agriculture 2010-11. Government of Nepal, Ministry of agriculture and Development, Agribusiness promotion and Stastistics Division, Singh Darbar, kathmandu, Nepal. Availabel at: http://www.moad.gov.np/ agriculture (Retrieved on 10th January 2013).
- Nienhuis J, Tivang J. and Skroch P (1995) Genetic relationship among cultivars and landraces of lima bean (*Phaseolus lunatus* L.) as measured by RAPD markers. *J. Amer. Soc. Hort. Sci.* 120: 300-306.
- Sonnante G and Pignone D (2001) Assessment of genetic variation in a collection of lentil using molecular tools. *Euphytica*.