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In view of crude oil prices, and its environmental issues, utilization of 

sustainable renewable alternative energies such as biofuels is rapidly 

progressing in many countries. The increasing global energy demand and 

depleting fossils fuels sources has led to search alternative clean and renewable 

fuels. One of the best alternatives to the gasoline is lignocellulosic bioethanol. 

Recent researches on lignocellulosic bioethanol focuses on advancement of 

pretreatment techniques for improved sugar yields and decreased inhibitors 

production. Pretreatment technique with no or less use of chemicals and cost 

effectiveness is the main purpose of most of the researches. Biological 

pretreatment techniques produce less fermentation inhibitors than chemical 

pretreatments. In order to cope with fermentation inhibitors different strategies 

can be adopted during pretreatment processes. In the course of time, 

advancements in production process over separate hydrolysis and fermentation 

have been introduced. Simultaneous saccharification and co/fermentation; and 

consolidated bioprocessing for bioethanol production are gaining popularity 

among researchers. 

Abbreviations:  

SHF: separate hydrolysis and fermentation 

SSF: simultaneous saccharification and fermentation 

SSCF: simultaneous saccharification and co-fermentation 

CBP: consolidated bioprocessing 

HMF: hydroxymethyl furfural 

 

 

Keywords: lignocellulosic biomass; pretreatment techniques; fermentation inhibitors; bioethanol production 

Introduction

Initially automobiles were designed to work with ethanol. 

However, in the early 20th century, discovery of new oil 

fields, their abundance and low oil prices resulted engines 

modification giving priority to oil derivatives as fuels. Then 

gasoline became the basic fuel for cars all over the world. 

But, in Brazil since 1923, ethanol blends have been used in 

variable proportions in gasoline (Amorim & Lopes, 2005). 

The oil crisis in 1970 and 1979, contributed to produce the 

first car to run on ethanol only, for the Brazilian market. 

This resulted increase in ethanol consumption and 

significantly reduced oil dependence. However, factors 

involving oil price drops, reduction of subsidies to 

producers and rise of sugar prices contributed to biofuel 

shortage that led to a major downturn in the demand for 

ethanol-run cars. At the beginning of 21st century, high oil 

prices in the international market and the development of 

flex-fuel technology motivated the use of ethanol as fuel 

(Lopes et al., 2016). At present, due to progressive 

diminishing of petroleum reserves, dependence of many 

countries on import of this raw material and negative 

consequences of its use; use of ethanol for fuel purposes is 

regaining significance (Joanna et al., 2019).  
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Sustainable clean energy and climate change issues are the 

center of attraction in today’s world. Many different 

legislations and measures are adopted at local and 

international level to improve the clean energy technology 

and reduce the dependence on fossils fuel. For this, 

lignocellulosic biomass is cheap and widely available 

substrate to generate cellulosic sugar and then to biofuels 

(Raud et al., 2019). Bioethanol was identified as the most 

sustainable source of biofuel as renewable energy that can 

be easily maintained for which the viable feedstock 

resources are cassava, sugarcane, plant seed and waste 

materials (Adewuyi, 2019). Lignocelluloses hold 

considerable potential to meet the current energy demand of 

the modern world. It is also essential to overcome our 

excessive dependence on petroleum for liquid fuels that 

cause environmental pollution or global climate change 

(Rastogi & Shrivastava, 2017). Annual bioethanol 

production of the world is increasing per year. In 2016, total 

annual bioethanol production in the world was 26,000 

million gallons, which increased to 29,000 million gallons 

by 2019. United States is the leading country in terms of 

bioethanol production, which alone produces 15,800 

million gallons in 2019 (RFA, 2021). 

Challenges and Advancements in Bioethanol 

Production 

Production of bioethanol requires a multistep process that 

significantly increase the cost of biofuels produced. Finding 

fast, cheap, and efficient processes is the main challenge for 

the production of bioethanol  (Carrillo et al., 2019). 

Biomass complexity, harvesting, and transportation of 

biomass from farm to factory are challenges to produce 

bioethanol at large scale. Smooth biomass supply chain is 

most important for success of a biorefinery (Sultana et al., 

2010). The collected biomass usually has contaminants, 

stone and soil, which can affect the overall process in terms 

of sugars recovery, inhibiting the pretreatment reaction and 

choking the reactor lines. In addition, these issues greatly 

impact on operational and capital cost for the overall 

biomass conversion process (Antunes et al., 2019). In 

general, majority of feedstock needs to be designed to have 

maximum uniformity in biomass and its smooth transfer to 

reactors from pipelines (Chandel et al., 2018). 

Besides structural modification in biomass, removal of 

hemicellulose and lignin is a goal of pretreatment 

technologies to turn the carbohydrate fraction accessible for 

enzymatic hydrolysis. Each pretreatment method has its 

own advantages, but also challenges to be overcome, as 

discussed in Table 1. Biological pretreatment methods are 

green and eco-friendly, but they are inherently slow and 

difficult to scale up (Antunes et al., 2019). A key challenge 

associated with kitchen waste as substrates for bioethanol 

production is the varied constituents of daily wastes 

production, that makes difficult in appropriate choice of 

pretreatment (Hafid et al., 2017). Other challenges in 

renewable energy production includes Land tenure system, 

high production costs, weak governmental policies and 

competition between biofuel feedstock and food (Adewuyi, 

2019). 

Developing new strategies towards maximal liberation and 

utilization of sugars from agricultural waste for cost 

effective ethanol production is an utmost requirement 

(Rastogi & Shrivastava, 2017). Biofuel price and 

production cost in China indicate that it might not be 

economically efficient to produce biofuels from non-food 

crops (Chen et al., 2016). 

A case study by Mamadzhanov et al (2019) on use of 

bioethanol among Korean public conclude consumers who 

are knowledgeable about renewable energy sources are 

more likely to purchase second-generation ethanol. In the 

similar manner, participants who put more value to 

environmental friendliness of fuel over its price are more 

willing to pay for the product.  

Although bioethanol production cost is lower than the 

gasoline production cost, higher fuel consumption ratio for 

bioethanol fuel results in equal driving cost for both E10 

and conventional gasoline but E85 provides 23% lower 

driving cost (Daylan & Ciliz, 2016). The production of 

sugarcane-based bioethanol could support transport energy 

demand and increases energy security by decreasing 

dependence on fuel imports (Gutierrez et al., 2020). Use of 

bioethanol as a transport fuel can potentially reduce 

greenhouse gas emissions with respect to conventional 

gasoline (Daylan & Ciliz, 2016). 

In spite of advancements in various pretreatment methods 

which results in maximum sugar yield with minimum 

inhibitors production, still there is a huge scope for 

improved biomass pretreatment and detoxification-based 

innovations. There is still a need for cost-effective methods 

that can offer maximum sugar yield with minimum 

inhibitory compounds, energy, and chemical consumption 

(Bhatia et al., 2020). 

Pretreatment Technologies 

Major components in lignocellulosic biomass are cellulose, 

hemicellulose, and lignin that forms a complex structure. 

This complex structure results in impermeability of 

lignocellulosic biomass towards mechanical and biological 

degradation. However, to provide better accessibility to the 

components to be converted into useful fermentable sugars, 

pretreatment of biomass is done. Biomass conversion into 

sugars could only be achieved through the removal of 

hemicellulose and lignin, reduction in the crystallinity of 

cellulose, as well as the increase of porosity and specific 

surface area of biomass structure (Loow et al., 2016).  

Mechanical Pretreatment 

The most influential factors for physical pretreatment are 

biomass characteristics and final particle size. Meanwhile, 
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high power consumption and usually low efficiency are the 

main drawbacks (Seidl & Goulart, 2016). There are various 

types of physical pretreatments such as milling, high 

pressure homogenization, electron beam irradiation, hot 

compression and photo-catalysis (Rezania et al., 2020). 

Mechanical pretreatment of lignocellulosics is usually 

performed by chopping and milling. This reduces the 

particle size of lignocellulosic biomass by disrupting their 

surface structure, shear or compression forces (Tsapekos et 

al., 2017). The milling method increases enzymatic 

hydrolysis and digestibility (Rezania et al., 2020). 

Chemical Pretreatment 

Alkaline Pretreatment: 

Alkaline solutions such as sulfite, sodium hydroxide, 

ammonium hydroxide, and lime have been used. Based on 

the literature, sodium hydroxide is the most used alkaline 

solution as it is effective for delignification and works in 

various conditions (Rezania et al., 2020). Alkaline 

treatment disrupts the ester and glycosidic side chains 

causing alteration in lignin structure, cellulose swelling and 

its partial decrystallization and partial solubilization of 

hemicelluloses (Rastogi & Shrivastava, 2017).  

Acid Pretreatment 

Various concentrated or dilute inorganic and organic acids 

were assessed to hydrolyze lignocelluloses. These aids are 

used as catalysts (Rabemanolontsoa & Saka, 2016). Dilute 

rather than concentrated acid is used either at high 

temperature for short time period or lower temperature for 

longer retention time to solubilize hemicelluloses and lignin 

(Rastogi & Shrivastava, 2017). Dilute-acid processes 

require high temperatures to achieve acceptable cellulose to 

sugar conversion rates. The high temperatures increase the 

rates of sugar decomposition and equipment corrosion 

(Jones & Semrau, 1984). Acid pretreatment results 

formation of inhibitory compounds like furfural, 5- HMF, 

phenolic acids and aldehydes (Rastogi & Shrivastava, 

2017). 

Physico-Chemical Pretreatment 

Physico-chemical processes are improvements of the 

established chemical processes, to diminish reaction time 

and improve efficiency (Rabemanolontsoa & Saka, 2016). 

Physico-Chemical Alkaline Pretreatment: 

Physical parameters were added to the chemicals alkaline 

pretreatment in order to enhance lignin removal and 

increase efficiency. Alkali agent with high pressure creates 

a physico-chemical alteration in biomass structure. As like 

ordinary alkaline pretreatment, there is almost no sugar loss 

and results in decrystallization cellulose, partial 

depolymerization of and removal of acetyl group from 

hemicellulose, cleavage of lignin-carbohydrate complex 

linkages and the C–O–C bonds in lignin. The pressurization 

increases the surface area and the wettability as compared 

to regular alkaline hydrolysis (Rabemanolontsoa & Saka, 

2016). 

Ammonia Fiber Explosion: 

Ammonia fiber explosion (AFEX) is similar to steam 

explosion being liquid ammonia at high temperature (90–

100 oC) for several minutes. High pressure and temperature 

allow for sudden expansion of ammonia that causes 

swelling and physical breakdown of biomass structure and 

partial reduces the decrystallization of cellulose and lignin 

(Laureano-Perez et al., 2005). The ammonia can be 

recycled and nitrogen source is not required for subsequent 

microbial fermentation. But only slight amounts of 

hemicellulose and lignin are dissolved during the 

pretreatment (Kim, 2018).  

Ionic Liquid: 

Ionic liquid has gained more attention due to high solubility 

of biomass in it resulting high yield of sugars and 

carbohydrates. It enhances enzymatic delignification by 

maintaining cellulase activity and stability. Temperature 

and biomass loading affect the hydrolysis rate (Elgharbawy 

et al., 2016). Ionic liquids are expensive and require tedious 

recycling, and their toxicity and biodegradability are not yet 

well understood (Rabemanolontsoa & Saka, 2016). 

Hydrothermal Pretreatment 

Hydrothermal treatment is the reaction occurring under the 

conditions of high temperature and high pressure in aqueous 

solutions in a closed system. It includes steam explosion, 

supercritical/subcritical water and hot-compressed water 

treatments depending on the conditions of temperature and 

pressure (Rabemanolontsoa & Saka, 2016). 

Stem Explosion: 

It is the most commonly used method for hydrothermal 

pretreatment of woody biomass. Biomass exposed to hot 

steam under high pressure followed by sudden release in 

pressure cause auto hydrolysis of acetyl group of 

hemicellulose. This disrupts the cell wall structure and 

individual fibers get separated (Rastogi & Shrivastava, 

2017). 

Supercritical and Subcritical Water: 

Supercritical water treatment provides high yield of 

hydrolyzed products but part of the sugar is lost due to 

cellulose fragmentation. On the other hand, cellulose under 

subcritical water is likely to be less decrystallized. A 

combined supercritical and subcritical treatments were 

therefore developed and increased the yields with fewer 

degradation products (Saka & Ehara, 2004). 

Hot-Compressed Water or Liquid Hot Water: 

Liquid hot water is a milder condition compared to sub and 

supercritical water. Liquid hot water process primarily 

solubilizes hemicellulose and lignin, and exposes internal 

cellulose contents, increasing enzyme-cellulose 

accessibility (Rezania et al., 2020). 
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Table 1: Advantages and disadvantages of common pretreatment methods 

Pretreatment 

strategy 

Advantage Disadvantage References 

Mechanical Increases enzymatic hydrolysis 

and digestibility 

High power consumption and 

low efficiency 

(Rezania et al., 2020; 

Seidl & Goulart, 

2016) 

Alkaline Selective lignin removal, no 

reducing sugar loss, improve 

enzymatic hydrolysis and, 

increases surface area and 

wettability 

Longer reaction time (Bali et al., 2014; 

Rabemanolontsoa & 

Saka, 2016; Seok et 

al., 2015) 

Acid Lignocellulosic matrix disruption 

and amorphous cellulose 

conversion 

Problems with acid recovery 

and equipment corrosion, 

formation of inhibitory 

compounds 

(Jones & Semrau, 

1984; Rastogi & 

Shrivastava, 2017; 

Rezania et al., 2020) 

Stem explosion Cost effectiveness, decreased 

environmental influence, lower 

energy requirement,little to no 

chemical usage 

Formation of inhibitory 

products, less effective for 

softwoods 

(Kim, 2018; 

Rabemanolontsoa & 

Saka, 2016; Rastogi 

& Shrivastava, 2017) 

Supercritical and 

subcritical water 

High yield of hydrolyzed 

products, fewer degradation 

products 

Low cellulose decrystallization. (Saka & Ehara, 2004) 

Liquid hot water Increase enzyme-cellulose 

accessibility 

 (Rezania et al., 2020) 

Ammonia fiber 

explosion 

High sugar recovery with no 

inhibitors production, does not 

require additional steps for 

reduction of particle size before 

pretreatment. 

High energy required for 

ammonia recovery. 

(Kim, 2018; 

Rabemanolontsoa & 

Saka, 2016) 

Ionic liquid Enhances enzymatic 

delignification and high sugar 

yield 

Expensive and require tedious 

recycling 

(Elgharbawy et al., 

2016; 

Rabemanolontsoa & 

Saka, 2016) 

Biological Selective, with no chemical 

addition, less energy required, low 

severity 

Slow process, extremely low 

hydrolysis rate and partial 

hemicellulose hydrolysis. 

(Maurya et al., 2015; 

Sharma et al., 2019; 

Sindhu et al., 2015) 

CBP Effective for simultaneous 

saccharification and fermentation, 

improve process economics and 

ethanol yield. 

Difficulty in finding suitable 

microbial consortium, common 

growth condition and in genetic 

manipulation. 

(Farias & Filho, 

2019; Sharma et al., 

2019) 

Combined Improve lignin degradation, 

reduction in sugar loss, improve 

ethanol yield. 

Tedious process (Ummalyma et al., 

2019) 
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Biological Pretreatment 

Biological pretreatments are generally carried out by 

growing microorganisms directly on the feedstocks or by 

use of enzyme cocktails. This process is selective, with no 

chemical addition, less energy required, and low severity. It 

does not release any hazardous or toxic compounds to the 

environment and the byproduct does not inhibit subsequent 

hydrolysis as well as fermentation since it is carried out at 

mild conditions (Sindhu et al., 2015). But extremely low 

rate of hydrolysis (Maurya et al., 2015), partial hydrolysis 

of hemicellulose and chances of health hazards (Sharma et 

al., 2019) are the major drawbacks. It mostly utilizes fungal 

and bacterial strains or their enzymes. This method is 

drawing more attention due to its ability to operate in the 

relatively short reaction time and low nutrition requirement 

for the enzymatic reactions (Rezania et al., 2020). Important 

process parameters affecting biological pretreatment 

include the nature as well as composition of biomass, type 

of microorganism involved, incubation temperature, pH, 

incubation time, inoculums concentration, moisture content 

and aeration rate (Sindhu et al., 2015). 

Pretreatment especially using white rot fungi can improve 

the hydrolysis efficiency with the advantage of limited 

energy consumption (Shi et al., 2009). White rot fungi 

belong to Basidiomycetes are selectively lignin degrading 

and enhance hydrolysis efficiency (Suhara et al., 2012). 

Irpex lacteus a white rot fungus produced varieties of 

extracellular hydrolytic and oxidative enzymes with 

hydrolysis yield of 82% after 28 days of biological 

pretreatment (Du et al., 2011). Treatment of Eucalyptus 

grandis saw dust with Pleurotus ostreatus and Pleurotus 

pulmonarius resulted in selective degradation of lignin 

(Castoldi et al., 2014). 

Combined Strategy 

A single pretreatment method does not provide the expected 

results as it is limited due to its functioning modes. For this, 

combined pretreatment process incorporating two or more 

pretreatments from different categories is used. For 

example: biological pretreatment incorporated with 

different methods like stem explosion, liquid hot water, 

mild acid/alkali, ultrasonic, organosolvents, ammonia fiber 

expansion, alkaline/oxidative have been reported 

(Ummalyma et al., 2019). 

Hydrolysis and Fermentation 

Cellulose is enzymatically hydrolysable by three different 

cellulolytic enzymes: endoglucanases, exoglucanases and 

β-glucosidases. This enzymatic complex system is inhibited 

by its final hydrolysis products, particularly by glucose. The 

simultaneous saccharification and fermentation processes, 

combines enzymatic hydrolysis of cellulose with 

simultaneous fermentation of glucose to ethanol. In this 

process, the stages are virtually the same as in the separate 

hydrolysis and fermentation system, except that both are 

performed in the same bioreactor. Thus, the presence of 

yeast together with the cellulolytic enzyme complex 

reduces the accumulation of the inhibiting sugars within the 

reactor, thereby increasing the yield and the saccharification 

rates. Also there is use of single bioreactor for the entire 

process, therefore reduces the investment costs (Ferreira et 

al., 2010). The SSF scheme minimizes the inhibition by 

end-product on the enzyme activity and prevents microbial 

contamination (Azhar et al., 2017).  

A comparative study of separate hydrolysis and 

fermentation versus simultaneous saccharification and 

fermentation by Althuri & Banerjee, (2019) illustrated that 

higher ethanol productivity was obtained in SSF under 

optimized conditions. Similar study by Tulcan & Hadaruga, 

(2011) demonstrated a higher productivity of SSF process 

comparing with SHF process which can be explained by 

inhibition of cellulase activity in SHF process due to 

glucose accumulation. This inhibition can be avoided in 

SSF process fermenting the glucose simultaneously with its 

production. They also demonstrate that yeasts and 

cellulases can work in the same medium conditions and at 

common temperature of 35-40 oC. 

Consolidated bioprocessing of dilute acid pretreated wheat 

straw using a consortium of Trichoderma reesei, 

Saccharomyces cerevisiae and Scheffersomyces stipitis by  

Brethauer & Studer, (2014) resulted maximum ethanol 

concentration was about 9.1 g/L. Similarly, a co-culture of 

Clostridium phytofermentans and Saccharomyces. 

cerevisiae with added endoglucanase produced 

approximately 22 g/L ethanol. However, C. 

phytofermentans and S. cerevisiae mono-cultures produced 

approximately 6g/L and 9 g/L, respectively (Zuroff et al., 

2013).  

Bioethanol Production Process 

To make bioethanol production steps more efficient, 

extensive research on: various pretreatment methods, 

enzyme development for enhanced hydrolysis, more 

tolerant yeasts capable of fermenting different sugars, has 

been carried out. Different combined processing 

technologies such as simultaneous saccharification and 

fermentation (SSF), simultaneous saccharification and co-

fermentation (SSCF) and consolidated bioprocessing (CBP) 

can be applied to achieve value addition and perspective, 

cost saving measures. Residues from bioethanol process can 

be used to produce additional products like bio-chemicals, 

fertilizer, heat and energy by applying integrated 

biorefinery approach (Raud et al., 2019). 

Currently separate hydrolysis and fermentation (SHF) is the 

main process in bioethanol production. In this process the 

pretreated lignocellulosic biomass is hydrolyzed by enzyme 

or chemicals like, HCl in a reactor and then the hydrolysate 

is fermented to ethanol in different reactor. Usually, 

hexoses and pentoses fermentation are carried out in 

different independent reactors. The major advantage of this 
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method is the saccharification and fermentation can be 

carried out at its own optimal conditions. However, high 

production cost due to longer time and equipment costs and 

the chance of contamination are the major pitfalls of this 

method (Verardi et al., 2020). 

Simultaneous Saccharification and Fermentation/Co-

Fermentation 

In order to overcome the limitations of SHF, other 

technologies have been developed including SSF, SSCF 

and CBP. These technologies combine the enzyme 

hydrolysis and fermentation in a single reactor (Verardi et 

al., 2020).  

Since SSF is a shorter process than SHF, it reduces the time 

of a technological process leading to low production costs. 

The research trend in biofuels is cost reduction in order to 

be competitive on the fuel market, where cellulosic ethanol 

should replace gasoline and ethanol obtained from sugar, 

food or feed crops (Tulcan & Hadaruga, 2011). The 

advantage of saccharification and fermentation 

simultaneously in a single reactor is the possibility to 

rapidly convert the newly formed sugar into ethanol, which 

help to decrease sugar buildup in the medium and alleviate 

feedback inhibition of cellulose (Azhar et al., 2017; Pinaki 

et al., 2015). The risk of contamination in SSF is less due to 

presence of ethanol in the broth. Ethanol makes the reaction 

mixture less susceptible to the undesired microbial action. 

However the main drawback is the different optimum 

temperatures of the hydrolysis and fermentation processes 

(Verardi et al., 2020).  

In SSF hexoses and pentoses are fermented in two different 

bioreactors with respective fermenting microorganism. To 

overcome this problem a new concept simultaneous 

saccharification and co-fermentation (SSCF) has been 

introduced and performed in a single reactor (Azhar et al., 

2017). Co-culture of different microorganisms can be 

employed for mixed saccharides fermentation (Paulova et 

al., 2014). Co-culture of xylose and hexoses fermenting 

yeasts consume all reducing sugars in a mixed sugar 

concentration, where hexose content was utilized first. 

Xylose is utilized slowly in co-culture fermentation 

compared to single culture. This might be due to oxygen 

competition, faster ethanol accumulation by hexose 

fermenting species and due to diauxic growth of 

microorganisms. Co-fermentation strategy could improve 

process economics by shortening fermentation times, and 

ethanol yield through complete sugar utilization from 

biomass (Farias & Filho, 2019). 

Consolidated Bioprocessing 

 In SSF and SSCF, saccharification is done by enzyme 

provided externally or produced in separate unit operation. 

A key challenge to cost‐competitiveness in cellulosic 

bioethanol is the cost of the enzyme that converts polymeric 

cellulose into single molecules of sugar. Recent researches 

focused on the appropriate strategy to overcome this 

challenge. A significant effort is still required to lower the 

contribution of enzymes to biofuel production costs 

(Marcuschamer et al., 2012). A new approach CBP have 

been introduced in which a special microorganism or 

microbial consortium are used to convert the feed stock into 

bioethanol without pre-treatment. The raw material for CBP 

does not require any special pre-treatment and particle size 

should be reduced sufficiently (Paulova et al., 2014). This 

can reduce operational costs and capital investment for 

purchasing enzyme or its production. However, selection or 

design of a suitable microorganism/microbial consortium is 

a daunting task (Verardi et al., 2020). In microbial 

consortium one microorganism may favor the growth of 

second microorganism producing growth factors, removing 

inhibitors or ensuring optimal environmental conditions 

(Rago et al., 2019). There exist some technical challenges 

with microbial consortium, as low ethanol yields associated 

with different optimal oxygen transfer rate demanded by 

each microorganism. One of the basic requirements is the 

absence of any inhibitory effect of one microbial species 

over each other (Ashoor et al., 2015). Besides that, there is 

also mandatory that each strains share similar culture 

characteristics in order to provide the maximum activity 

(Farias & Filho, 2019). The most challenging task with CBP 

is selection or design of a suitable microorganism or 

microbial consortium that must express appropriate 

hydrolytic enzymes matching the lignocellulosic feedstock, 

and produce ethanol (Paulova et al., 2014). 

Fermentation Inhibitors 

Pretreatment processes allow enzyme accessibilities to the 

exposed cellulose and result in the enhancement of 

conversion yield. However, undesired lignocellulose-

derived compounds such as furans, organic acids, phenolic 

compounds, lignocellulose extractives and other soluble 

mono/oligomeric sugars can also be released during the 

pretreatment. These inhibitory molecules present in the 

pretreated hydrolysates could be categorized into four 

groups as phenolic compounds, furan aldehydes, carboxylic 

acids and soluble sugars (Kim, 2018). Formation of 

degradation molecules from lignocellulosic materials 

strongly depends on the type of raw material, pretreatment 

method, and pretreatment conditions (Almeida et al., 2007). 

Phenolic Compounds 

Wide range of phenolics compounds are produced due to 

lignin breakdown and acid hydrolysis. A mixture of 

phenolics such as syringaldehyde, 4-hydroxybenzaldehyde, 

catechol, vanillin, 4-hydroxybenzoic acid, dihydro 

coniferyl alcohol, coniferyl aldehyde, and syringic acid was 

reported as lignin degradation products from hardwoods 

and agricultural residue (Taherzadeh & Karimi, 2011).  

The phenolic compounds can decrease the rate of ethanol 

production, microbial growth rate and yields by affecting 

the cell membrane integrity (Heipieper et al., 1994) as well 
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as can cause breakdown of DNA, resulting in the inhibition 

of RNA and protein synthesis (Klinke et al., 2004).  Some 

researches indicated that the phenolic compounds are more 

toxic than other potent inhibitory molecules even at lower 

concentrations, since their low molecular weight allow 

them able to penetrate cell membranes and damage internal 

structures, as well as causing changes in the morphology of 

cells (Kim, 2018; Klinke et al., 2004; Palmqvist & 

Hagerdal, 2000).    

Qin et al (2016), investigated, Vanillin significantly 

decreases enzyme activity and concentration during 

enzymatic hydrolysis which cannot be significantly 

mitigated by pH, temperature, and the addition of calcium 

chloride, BSA and Tween 80. Similarly it is concluded that 

phenolic compounds despite their low concentrations 

strongly inhibit cellulase; precipitating and deactivating β-

glucosidase (Kim et al., 2011; Michelin et al., 2015). 

Furan Derivatives 

Furfural and hydroxymethyl furfural (HMF) are furan 

derivative degradation products of lignocellulosic biomass. 

Five carbon sugars such as xylose form furfural and hexose 

sugars and carbohydrates form HMF during acid 

pretreatment and hydrolysis at high temperature 

(Taherzadeh & Karimi, 2011). Furfural is usually found in 

lower levels than HMF. However, it is often still in enough 

concentration, around 1 g/L to be inhibitory (Almeida et al., 

2007). Furfural and HMF concentration in the order of 1.0 

g/L and above has clear negative effects on many bacteria, 

yeasts, and filamentous fungi on the vitality, viability, 

specific growth rate, lag phase, ethanol yield, and ethanol 

productivity (Nilvebrant et al., 2001). Several intercellular 

enzymes such as dehydrogenases (Modig et al., 2002) and 

hexokinase (Taherzadeh & Karimi, 2011) have shown to be 

sensitive to furfural and HMF.  

Small Organic Acids 

Organic acids such as acetic, formic, lactic, and levulinic 

acids can hinder the microbial growth due to improper ion 

transportation (Pampulha & Loureiro, 1989). Formation of 

these kinds of acids is highly dependent on pretreatment 

conditions and usually generated from acetyl groups linked 

to the sugars or from the hemicellulose backbones. Minor 

weak acids such as gallic acid, caproic acid, furoic acid, 

benzoic acid, and vanillic acid, have also been identified in 

pretreated hydrolysates (Kim, 2018). 

Soluble Sugars 

Soluble hydrolysis intermediates and end products of 

cellulose digestions, inhibits enzyme activity. For instance, 

glucose, cellobiose, and cello-oligomers accumulation 

inhibit cellulase activity (Holtzapple et al., 1990), glucose 

inhibit β-glucosidase and cellobiose inhibit 

cellobiohydrolase (Philippidis et al., 1993).  

Strategies to Minimize the Effect of Inhibitors 

The inhibition of furan, phenolics and acids is the main 

hurdle in large scale production of lignocellulosic 

bioethanol. Several studies reported that S. cerevisiae has 

innate tolerance to some extent (Almeida et al., 2007) and 

convert these inhibitors to less harmful compounds 

(Palmqvist & Hagerdal, 2000). For instance, HMF is 

reduced to 2,5- bis-hydroxymethyl furan under aerobic and 

anaerobic conditions (Liu et al., 2004).Whereas, furfural 

can be reduced to furfuryl alcohol under both aerobic as 

well as anaerobic conditions and also can be oxidized to 

formic acid under aerobic conditions (Palmqvist et al., 

1999). However, tolerance to HMF and furfural is clearly 

strain dependent (Nilsson et al., 2005). Similarly presence 

of phenylacrylic acid decarboxylase (PAD) in S. cerevisiae 

metabolizes some phenolic compounds present in 

lignocellulose hydrolysate (Klinke et al., 2003). 

Biological Detoxification 

Jonsson et al (1998) investigated detoxification of wood 

hydrolysate using laccase and peroxidase extracted from the 

white rot fungus Trametes versicolor. They found that both 

enzymes were effective and laccase was more effective in 

eliminating phenolics and other acidic compounds to 

increase glucose consumption and ethanol productivity. 

Similarly, Martin et al (2002) found that approximately 

80% of phenolic compounds were eliminated by the laccase 

treatment of sugarcane bagasse.  

In-Situ Microbial Detoxification (ISMD) 

In-situ microbial detoxification is a process where 

microorganisms are involved directly in the detoxification 

of lignocellulosic hydrolysates (Chandel et al., 2013). 

Selective lignin degrading microorganisms, particularly 

white rot fungi, are grown on raw lignocellulosic biomass. 

This is then hydrolyzed to obtain fermentable sugars and 

contains fewer fermentation inhibitors (Gupta et al., 2011). 

Detoxification and adaptation procedures are potential 

routes to overcome hydrolysate toxicity and microorganism 

sensitivity (Nouri et al., 2020). 

Several researches have been conducted in order to detoxify 

lignocellulose hydrolysates using a variety of 

microorganisms along with genetically engineered 

recombinants expressing laccase or peroxidases. 

Simultaneous detoxification using Trichoderma reesei 

shows sharp decrease in phenolics as well as decrease in 

concentrations of furans, and weak acids (Palmqvist et al., 

1997). The treated hydrolysates showed a threefold 

improvement in ethanol productivity and a fourfold 

improvement in yield (Chandel et al., 2013).  

Many researchers and efforts have been employed in order 

to cope with these inhibitors. Some strategies to counteract 

lignocellulose derived inhibitors are summarized in Table 

2.
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Table 2: Strategies to counteract lignocellulose derived inhibitors 

Strategy Effect/process Consideration  References 

Biomass selection 

and modification 

Screening of biomass that produce less 

undesirable products 

Time consuming (Kim, 2018) 

Fermentation 

strategy 

Fed-batch or Continuous operation, high 

cell density, encapsulation 

Cell viability (Taherzadeh & 

Karimi, 2011) 

Vaccum or high-

pressure evaporation 

Sugar concentration, part of toxic 

components removal 

High evaporation may make 

the hydrolyzates 

unfermentable. 

(Dehkhoda et al., 

2009; Walton et al., 

2010) 

Chemical 

detoxification 

Chemical supplementation Require chemical (Kim, 2018) 

Enzymatic 

detoxification 

Specific enzymes (i.e. laccase and 

peroxidases) 

High cost of enzyme (Chandel et al., 2013) 

In situ microbial 

detoxification 

Microbial innate tolerance to inhibitors Selective screening of 

microorganism 

(Palmqvist et al., 

1999) 

Co-culture Use of microbial consortium Screening of suitable 

consortia 

(Farias & Filho, 2019) 

Genetic engineering Fermenting organisms that produce 

chimeric enzymes with altered properties 

of detoxification 

Require time for development (Chandel et al., 2013) 

 

Conclusion 

This article is meant to contribute to researches on 

alternative fuel production. For improvement in sustainable 

and clean energy, many researches dealing with 

lignocellulosic ethanol production primarily focuses on 

pretreatment and production process. So far, advancements 

in bioethanol production: SSF, SSCF and CBP have been 

introduced. Despites many researches deal with 

lignocellulosic ethanol production, including CBP, still the 

yield is less. CBP technique can be an alternative, to 

eliminate chemicals and extensive pretreatment strategy in 

production process. Extensive researches need to be 

performed to make bioethanol as a competitor in fuel 

market.  
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